Premium
Analytical stiffness matrices with Green–Lagrange strain measure
Author(s) -
Pedersen Pauli
Publication year - 2004
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1174
Subject(s) - tangent , mathematics , measure (data warehouse) , tetrahedron , finite element method , stiffness , displacement (psychology) , lagrange multiplier , rotational symmetry , stress (linguistics) , mathematical analysis , geometry , structural engineering , mathematical optimization , computer science , engineering , psychology , linguistics , philosophy , database , psychotherapist
Separating the dependence on material and stress/strain state from the dependence on initial geometry, we obtain analytical secant and tangent stiffness matrices. For the case of a linear displacement triangle with uniform thickness and uniform constitutive behaviour closed‐form results are listed, directly suited for coding in a finite element program. The nodal positions of an element and the displacement assumption give three basic matrices of order three. These matrices do not depend on material and stress/strain state, and thus are unchanged during the necessary iterations for obtaining a solution based on Green–Lagrange strain measure. The approach is especially useful in design optimization, because analytical sensitivity analysis then can be performed. The case of a three node triangular ring element for axisymmetric analysis involves small modifications and extension to four node tetrahedron elements should be straight forward. Copyright © 2004 John Wiley & Sons, Ltd.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom