z-logo
Premium
Arbitrary discontinuities in space–time finite elements by level sets and X‐FEM
Author(s) -
Chessa Jack,
Belytschko Ted
Publication year - 2004
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1155
Subject(s) - finite element method , classification of discontinuities , space (punctuation) , mathematics , extended finite element method , mathematical analysis , geometry , structural engineering , computer science , engineering , operating system
An enriched finite element method with arbitrary discontinuities in space–time is presented. The discontinuities are treated by the extended finite element method (X‐FEM), which uses a local partition of unity enrichment to introduce discontinuities along a moving hyper‐surface which is described by level sets. A space–time weak form for conservation laws is developed where the Rankine–Hugoniot jump conditions are natural conditions of the weak form. The method is illustrated in the solution of first order hyperbolic equations and applied to linear first order wave and non‐linear Burgers' equations. By capturing the discontinuity in time as well as space, results are improved over capturing the discontinuity in space alone and the method is remarkably accurate. Implications to standard semi‐discretization X‐FEM formulations are also discussed. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here