Premium
A stabilized one‐point integrated quadrilateral Reissner–Mindlin plate element
Author(s) -
Gruttmann F.,
Wagner W.
Publication year - 2004
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1148
Subject(s) - stress resultants , quadrilateral , bending of plates , isotropy , stiffness matrix , mathematics , mathematical analysis , elasticity (physics) , geometry , plate theory , finite element method , structural engineering , bending , engineering , physics , materials science , boundary value problem , composite material , quantum mechanics
Abstract A new quadrilateral Reissner–Mindlin plate element with 12 element degrees of freedom is presented. For linear isotropic elasticity a Hellinger–Reissner functional with independent displacements, rotations and stress resultants is used. Within the mixed formulation the stress resultants are interpolated using five parameters for the bending moments and four parameters for the shear forces. The hybrid element stiffness matrix resulting from the stationary condition can be integrated analytically. This leads to a part obtained by one‐point integration and a stabilization matrix. The element possesses a correct rank, does not show shear locking and is applicable for the evaluation of displacements and stress resultants within the whole range of thin and thick plates. The bending patch test is fulfilled and the computed numerical examples show that the convergence behaviour is better than comparable quadrilateral assumed strain elements. Copyright © 2004 John Wiley & Sons, Ltd.