z-logo
Premium
A spectral stochastic element free Galerkin method for the problems with random material parameter
Author(s) -
Kim H. M.,
Inoue J.
Publication year - 2004
Publication title -
international journal for numerical methods in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.421
H-Index - 168
eISSN - 1097-0207
pISSN - 0029-5981
DOI - 10.1002/nme.1140
Subject(s) - mathematics , probabilistic logic , stochastic process , monte carlo method , galerkin method , polynomial chaos , property (philosophy) , spectral element method , mathematical optimization , finite element method , algorithm , computer science , mixed finite element method , structural engineering , statistics , philosophy , epistemology , engineering
This paper presents a spectral stochastic element free Galerkin method (SSEFGM) for the problems involving a random material property. The random material property and resulting system response quantity are represented by a probabilistic spectral expansion techniques (Karhunen–Loeve expansion and Polynomical Chaos series, respectively) and implemented into the element free Galerkin (EFG) analysis. Numerical solutions in 1D linear elastic problem with random elastic modulus are introduced, and compared with those of Monte Carlo simulation (MCS) so as to provide the validation of the proposed approach. The present SSEFGM approach can produce a probabilistic density distribution as well as a first‐ and second‐order statistical moments (mean and variance) of response quantity by a single calculation, which is distinguished from an iterative MCS. Moreover, the method is based on an element free analysis so that there is no need of nodal connectivities, which usually require more time and labourious task than main calculations. Thus the proposed SSEFGM approach can provide an alternative analysis tool for the problems contains a stochastic material property, and demands complex mesh structures. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here