z-logo
Premium
Minimizing synchronization in IDR ( s )
Author(s) -
Collig Tijmen P.,
van Gijzen Martin B.
Publication year - 2011
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.764
Subject(s) - bottleneck , synchronization (alternating current) , grid , mathematics , a priori and a posteriori , algorithm , mathematical optimization , matrix multiplication , matrix (chemical analysis) , computer science , topology (electrical circuits) , philosophy , physics , geometry , materials science , epistemology , combinatorics , quantum mechanics , composite material , quantum , embedded system
IDR ( s ) is a family of fast algorithms for iteratively solving large nonsymmetric linear systems. With cluster computing and in particular with Grid computing, the inner product is a bottleneck operation. In this paper, three techniques are investigated for alleviating this bottleneck. First, a recently proposed IDR ( s ) algorithm that is highly efficient and stable is reformulated in such a way that it has a single global synchronization point per iteration step. Second, the so‐called test matrix is chosen so that the work, communication, and storage involving this matrix is minimized in multi‐cluster environments. Finally, a methodology is presented for a‐priori estimation of the optimal value of s using only problem and machine‐based parameters. Numerical experiments applied to a 3D convection–diffusion problem are performed on the DAS‐3 Grid computer, demonstrating the effectiveness of our approach. Copyright © 2011 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom