z-logo
Premium
General resolution of a convergence question of L. Krukier
Author(s) -
Johnson Charles,
Krukier Lev
Publication year - 2009
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.681
Subject(s) - mathematics , norm (philosophy) , resolution (logic) , convergence (economics) , combinatorics , matrix (chemical analysis) , discrete mathematics , computer science , chemistry , law , political science , chromatography , artificial intelligence , economics , economic growth
It was shown that there exists a matrix norm N such that N ( A −1 B )<1 if A, B ∈ M n (), 0∉ F ( A ), and g ( A, B )<1 where g ( A, B )=max| z |, z ∈ G ( A, B ),\documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}\begin{eqnarray*}G(A,B) = \left\{\frac{x^{*}Bx}{x^{*}Ax}:x \in {\mathscr{C}}^{n},x^{*}x = 1\right\}\end{eqnarray*}\end{document}Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom