z-logo
Premium
Kronecker product approximation preconditioners for convection–diffusion model problems
Author(s) -
Xiang Hua,
Grigori Laura
Publication year - 2010
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.666
Subject(s) - preconditioner , mathematics , kronecker product , kronecker delta , block matrix , linear system , mathematical analysis , eigenvalues and eigenvectors , physics , quantum mechanics
Abstract We consider the iterative solution of linear systems arising from four convection–diffusion model problems: scalar convection–diffusion problem, Stokes problem, Oseen problem and Navier–Stokes problem. We design preconditioners for these model problems that are based on Kronecker product approximations (KPAs). For this we first identify explicit Kronecker product structure of the coefficient matrices, in particular for the convection term. For the latter three model cases, the coefficient matrices have a 2 × 2 block structure, where each block is a Kronecker product or a summation of several Kronecker products. We then use thisstructure to design a block diagonal preconditioner, a block triangular preconditioner and a constraint preconditioner. Numerical experiments show the efficiency of the three KPA preconditioners, and in particular of the constraint preconditioner that usually outperforms the other two. This can be explained by the relationship that exists between these three preconditioners: the constraint preconditioner can be regarded as a modification of the block triangular preconditioner, which at its turn is a modification of the block diagonal preconditioner based on the cell Reynolds number. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here