z-logo
Premium
A Rayleigh quotient minimization algorithm based on algebraic multigrid
Author(s) -
Hetmaniuk U.
Publication year - 2007
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.545
Subject(s) - multigrid method , rayleigh quotient , mathematics , quotient , preconditioner , rayleigh quotient iteration , algebraic number , algorithm , minification , algebra over a field , mathematical optimization , pure mathematics , iterative method , mathematical analysis , partial differential equation , eigenvalues and eigenvectors , physics , quantum mechanics
This paper presents a new algebraic extension of the Rayleigh quotient multigrid (RQMG) minimization algorithm to compute the smallest eigenpairs of a symmetric positive definite pencil ( A , M ). Earlier versions of RQMG minimize the Rayleigh quotient over a hierarchy of geometric grids. We replace the geometric mesh information with the algebraic information defined by an algebraic multigrid preconditioner. At each level, we minimize the Rayleigh quotient with a block preconditioned algorithm. Numerical experiments illustrate the efficiency of this new algorithm to compute several eigenpairs. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom