Premium
Algebraic multilevel preconditioning of finite element matrices using local Schur complements
Author(s) -
Kraus J. K.
Publication year - 2006
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.462
Subject(s) - schur complement , mathematics , preconditioner , finite element method , discretization , linear system , mathematical analysis , eigenvalues and eigenvectors , physics , quantum mechanics , thermodynamics
Abstract We consider an algebraic multilevel preconditioning technique for SPD matrices arising from finite element discretization of elliptic PDEs. In particular, we address the case of non‐M matrices. The method is based on element agglomeration and assumes access to the individual element matrices. The left upper block of the considered multiplicative two‐level preconditioner is approximated using incomplete factorization techniques. The coarse‐grid element matrices are simply Schur complements computed from local neighbourhood matrices, i.e. small collections of element matrices. Assembling these local Schur complements results in a global Schur complement approximation that can be analysed by regarding (local) macro elements. These components, when combined in the framework of an algebraic multilevel iteration, yield a robust and efficient linear solver. The presented numerical experiments include also the Lamé differential equation for the displacements in the two‐dimensional plane‐stress elasticity problem. Copyright © 2005 John Wiley & Sons, Ltd.