Premium
Preconditioning a mixed discontinuous finite element method for radiation diffusion
Author(s) -
Warsa James S.,
Benzi Michele,
Wareing Todd A.,
Morel Jim E.
Publication year - 2004
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.347
Subject(s) - preconditioner , discretization , finite element method , mathematics , discontinuous galerkin method , mixed finite element method , polygon mesh , finite volume method for one dimensional steady state diffusion , iterative method , mathematical analysis , partial differential equation , mathematical optimization , numerical partial differential equations , geometry , physics , thermodynamics
We propose a multilevel preconditioning strategy for the iterative solution of large sparse linear systems arising from a finite element discretization of the radiation diffusion equations. In particular, these equations are solved using a mixed finite element scheme in order to make the discretization discontinuous, which is imposed by the application in which the diffusion equation will be embedded. The essence of the preconditioner is to use a continuous finite element discretization of the original, elliptic diffusion equation for preconditioning the discontinuous equations. We have found that this preconditioner is very effective and makes the iterative solution of the discontinuous diffusion equations practical for large problems. This approach should be applicable to discontinuous discretizations of other elliptic equations. We show how our preconditioner is developed and applied to radiation diffusion problems on unstructured, tetrahedral meshes and show numerical results that illustrate its effectiveness. Published in 2004 by John Wiley & Sons, Ltd.