Premium
Multilevel approaches for FSAI preconditioning
Author(s) -
Magri Victor A. P.,
Franceschini Andrea,
Ferronato Massimiliano,
Janna Carlo
Publication year - 2018
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.2183
Subject(s) - tridiagonal matrix , scalability , cholesky decomposition , mathematics , algorithm , sparse matrix , matrix decomposition , robustness (evolution) , inverse , computer science , lu decomposition , domain decomposition methods , gaussian , biochemistry , eigenvalues and eigenvectors , physics , chemistry , geometry , quantum mechanics , database , finite element method , gene , thermodynamics
Summary Factorized sparse approximate inverse (FSAI) preconditioners are robust algorithms for symmetric positive matrices, which are particularly attractive in a parallel computational environment because of their inherent and almost perfect scalability. Their parallel degree is even redundant with respect to the actual capabilities of the current computational architectures. In this work, we present two new approaches for FSAI preconditioners with the aim of improving the algorithm effectiveness by adding some sequentiality to the native formulation. The first one, denoted as block tridiagonal FSAI, is based on a block tridiagonal factorization strategy, whereas the second one, domain decomposition FSAI, is built by reordering the matrix graph according to a multilevel k ‐way partitioning method followed by a bandwidth minimization algorithm. We test these preconditioners by solving a set of symmetric positive definite problems arising from different engineering applications. The results are evaluated in terms of performance, scalability, and robustness, showing that both strategies lead to faster convergent schemes regarding the number of iterations and total computational time in comparison with the native FSAI with no significant loss in the algorithmic parallel degree.