Premium
The conditioning of least‐squares problems in variational data assimilation
Author(s) -
Tabeart Jemima M.,
Dance Sarah L.,
Haben Stephen A.,
Lawless Amos S.,
Nichols Nancy K.,
Waller Joanne A.
Publication year - 2018
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.2165
Subject(s) - hessian matrix , data assimilation , mathematics , condition number , covariance , covariance matrix , eigenvalues and eigenvectors , hessian equation , least squares function approximation , explained sum of squares , mathematical optimization , statistics , meteorology , mathematical analysis , physics , quantum mechanics , estimator , first order partial differential equation , partial differential equation
Summary In variational data assimilation a least‐squares objective function is minimised to obtain the most likely state of a dynamical system. This objective function combines observation and prior (or background) data weighted by their respective error statistics. In numerical weather prediction, data assimilation is used to estimate the current atmospheric state, which then serves as an initial condition for a forecast. New developments in the treatment of observation uncertainties have recently been shown to cause convergence problems for this least‐squares minimisation. This is important for operational numerical weather prediction centres due to the time constraints of producing regular forecasts. The condition number of the Hessian of the objective function can be used as a proxy to investigate the speed of convergence of the least‐squares minimisation. In this paper we develop novel theoretical bounds on the condition number of the Hessian. These new bounds depend on the minimum eigenvalue of the observation error covariance matrix and the ratio of background error variance to observation error variance. Numerical tests in a linear setting show that the location of observation measurements has an important effect on the condition number of the Hessian. We identify that the conditioning of the problem is related to the complex interactions between observation error covariance and background error covariance matrices. Increased understanding of the role of each constituent matrix in the conditioning of the Hessian will prove useful for informing the choice of correlated observation error covariance matrix and observation location, particularly for practical applications.