Premium
A robust optimal preconditioner for the mixed finite element discretization of elliptic optimal control problems
Author(s) -
Gong Wei,
Tan Zhiyu,
Zhang Shuo
Publication year - 2018
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.2129
Subject(s) - preconditioner , mathematics , discretization , finite element method , optimal control , diagonal , mathematical optimization , mathematical analysis , linear system , geometry , physics , thermodynamics
Summary In this paper, we consider the efficient solving of the resulting algebraic system for elliptic optimal control problems with mixed finite element discretization. We propose a block‐diagonal preconditioner for the symmetric and indefinite algebraic system solved with minimum residual method, which is proved to be robust and optimal with respect to both the mesh size and the regularization parameter. The block‐diagonal preconditioner is constructed based on an isomorphism between appropriately chosen solution space and its dual for a general control problem with both state and gradient state observations in the objective functional. Numerical experiments confirm the efficiency of our proposed preconditioner.