z-logo
Premium
Multigrid with FFT smoother for a simplified 2D frictional contact problem
Author(s) -
Zhao Jing,
Vollebregt Edwin A. H.,
 Oosterlee Cornelis W.
Publication year - 2014
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.1923
Subject(s) - preconditioner , toeplitz matrix , fast fourier transform , solver , mathematics , discretization , multigrid method , condition number , matrix (chemical analysis) , coefficient matrix , iterative method , algorithm , mathematical analysis , mathematical optimization , eigenvalues and eigenvectors , partial differential equation , pure mathematics , physics , materials science , quantum mechanics , composite material
SUMMARY This paper aims to develop a fast multigrid (MG) solver for a Fredholm integral equation of the first kind, arising from the 2D elastic frictional contact problem. After discretization on a rectangular contact area, the integral equation gives rise to a linear system with the coefficient matrix being dense, symmetric positive definite and Toeplitz. A so‐called fast Fourier transform (FFT) smoother is proposed. This is based on a preconditioner M that approximates the inverse of the original coefficient matrix, and that is determined using the FFT technique. The iterates are then updated by Richardson iteration: adding the current residuals preconditioned with the Toeplitz preconditioner M . The FFT smoother significantly reduces most components of the error but enlarges several smooth components. This causes divergence of the MG method. Two approaches are studied to remedy this feature: subdomain deflation (SD) and row sum modification (RSM). MG with the FFT + RSM smoother appears to be more efficient than using the FFT + SD smoother. Moreover, the FFT + RSM smoother can be applied as an efficient iterative solver itself. The two methods related to RSM also show rapid convergence in a test with a wavy surface, where the Toeplitz structure is lost. Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom