z-logo
Premium
On the largest eigenvalue of a symmetric nonnegative tensor
Author(s) -
Zhou Guanglu,
Qi Liqun,
Wu SoonYi
Publication year - 2013
Publication title -
numerical linear algebra with applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.02
H-Index - 53
eISSN - 1099-1506
pISSN - 1070-5325
DOI - 10.1002/nla.1885
Subject(s) - irreducibility , mathematics , eigenvalues and eigenvectors , spectral radius , tensor (intrinsic definition) , minimax theorem , zero (linguistics) , symmetric tensor , combinatorics , pure mathematics , minimax , mathematical analysis , exact solutions in general relativity , mathematical optimization , quantum mechanics , linguistics , physics , philosophy
SUMMARY In this paper, some important spectral characterizations of symmetric nonnegative tensors are analyzed. In particular, it is shown that a symmetric nonnegative tensor has the following properties: (i) its spectral radius is zero if and only if it is a zero tensor; (ii) it is weakly irreducible (respectively, irreducible) if and only if it has a unique positive (respectively, nonnegative) eigenvalue–eigenvector; (iii) the minimax theorem is satisfied without requiring the weak irreducibility condition; and (iv) if it is weakly reducible, then it can be decomposed into some weakly irreducible tensors. In addition, the problem of finding the largest eigenvalue of a symmetric nonnegative tensor is shown to be equivalent to finding the global solution of a convex optimization problem. Subsequently, algorithmic aspects for computing the largest eigenvalue of symmetric nonnegative tensors are discussed. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom