z-logo
Premium
Sequences of graphical invariants
Author(s) -
Topp Jerzy
Publication year - 1995
Publication title -
networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.977
H-Index - 64
eISSN - 1097-0037
pISSN - 0028-3045
DOI - 10.1002/net.3230250102
Subject(s) - combinatorics , graph , mathematics , invariant (physics) , discrete mathematics , sequence (biology) , computer science , biology , genetics , mathematical physics
For a given graphical invariant π, a sequence (a o , a 1 ,…, a n ) of positive integers is said to be π‐feasible if there exists a graph G with distinguished vertices ν 1 , ν 2 ,…, ν n such that π (G) = a o and π(G −ν 1 −ν 2 −…−ν i ) = a i for i = 1, 2,…, n . In this paper, we investigate π‐feasible sequences for the irredundance, domination, and independence numbers of a graph.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here