z-logo
Premium
A polynomial time solvable concave network flow problem
Author(s) -
Guisewite G. M.,
Pardalos P. M.
Publication year - 1993
Publication title -
networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.977
H-Index - 64
eISSN - 1097-0037
pISSN - 0028-3045
DOI - 10.1002/net.3230230208
Subject(s) - flow network , time complexity , minimum cost flow problem , flow (mathematics) , class (philosophy) , polynomial , multi commodity flow problem , mathematics , mathematical optimization , maximum flow problem , combinatorics , computer science , discrete mathematics , artificial intelligence , mathematical analysis , geometry
We prove that the single‐source uncapacitated (SSU) version of the concave cost network flow problem, when all arcs except one have linear cost, is in the class P of problems solvable in time polynomial in the problem input length. This contrasts the corresponding result without network constraints, in which the problem is known to be NP‐hard [6]. © 1993 by John Wiley & Sons, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom