Premium
The average height of the d ‐th highest leaf of a planted plane tree
Author(s) -
Prodinger Helmut
Publication year - 1986
Publication title -
networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.977
H-Index - 64
eISSN - 1097-0037
pISSN - 0028-3045
DOI - 10.1002/net.3230160107
Subject(s) - combinatorics , mathematics , tree (set theory) , plane (geometry) , physics , geometry
It is proved that the d th highest leaf, where all planted plane trees with n nodes are assumed to be equally likely, has an average height \documentclass{article}\pagestyle{empty}\begin{document}$ \sqrt {\pi n} ‐ \frac{1}{2} ‐ \frac{2}{3}\sum\nolimits_{s = 1}^{d ‐ 1} {\left({2/9} \right)^s \left({\begin{array}{*{20}c} {2s + 1} \\ s \\ \end{array}} \right)} + O\left({n^{‐ 1/2 + \varepsilon}} \right) $\end{document} for all ϵ > 0 and n → ∞. This solves a problem left open in one of our previous papers.