z-logo
Premium
Secure grid‐based density peaks clustering on hybrid cloud for industrial IoT
Author(s) -
Sun Liping,
Ci Shang,
Liu Xiaoqing,
Guo Liangmin,
Zheng Xiaoyao,
Luo Yonglong
Publication year - 2020
Publication title -
international journal of network management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.373
H-Index - 28
eISSN - 1099-1190
pISSN - 1055-7148
DOI - 10.1002/nem.2139
Subject(s) - computer science , cloud computing , encryption , cluster analysis , scalability , homomorphic encryption , server , distributed computing , data mining , outsourcing , database , computer network , artificial intelligence , operating system , political science , law
Summary Cloud computing gives clients the convenience of outsourcing data calculations. However, it also brings the risk of privacy leakage, and datasets that process industrial IoT information have a high computational cost for clients. To address these problems, this paper proposes a secure grid‐based density peaks clustering algorithm for a hybrid cloud environment. First, the client utilizes the homomorphic encryption algorithm to construct encrypted objects with client dataset. Second, the client uploads the encrypted data to the cloud servers to implement our security protocol. Finally, the cloud servers return the clustering results with the disturbance to the client. The experimental results on the UCI datasets and the smart power grid dataset reveal that the secure algorithm presented in this paper can improve upon the precision and efficiency of other clustering algorithms while also preserving user privacy. Moreover, it only performs encryption and removes the disturbance operation on the client, so that the client has lower computational complexity. Therefore, the secure clustering scheme proposed in this paper is applicable to industrial IoT big data and has high security and scalability.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here