z-logo
Premium
Soft tissue rheology and its implications for elastography: Challenges and opportunities
Author(s) -
Bilston Lynne E.
Publication year - 2018
Publication title -
nmr in biomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.278
H-Index - 114
eISSN - 1099-1492
pISSN - 0952-3480
DOI - 10.1002/nbm.3832
Subject(s) - elastography , viscoelasticity , magnetic resonance elastography , rheology , anisotropy , materials science , stiffness , soft tissue , elasticity (physics) , biomedical engineering , biological tissue , ultrasound , radiology , acoustics , physics , medicine , optics , composite material
Magnetic resonance elastography and related shear wave ultrasound elastography techniques can be used to estimate the mechanical properties of soft tissues in vivo by using the relationships between wave propagation and the elastic properties of materials. These techniques have found numerous clinical and research applications, tracking changes in tissue properties as a result of disease or other interventions. Most dynamic elastography approaches estimate tissue elastic (or viscoelastic) properties from a simplified version of the equations for the propagation of acoustic waves through a homogeneous linear (visco)elastic medium. However, soft tissue rheology is complex and departs significantly from this idealized picture. In particular, soft tissues are nonlinearly viscoelastic, inhomogeneous and often anisotropic, and their apparent stiffness can vary with the current loading state. All of these features have implications for the reliability and reproducibility of elastography measurements, from data acquisition to analysis and interpretation. New developments in inversion algorithms for elastography are beginning to offer solutions to account for the complex rheology of tissues, including inhomogeneity and anisotropy. There remains considerable potential to further refine elastography to capture the full spectrum of tissue rheology, and thus to better understand the underlying tissue microstructural changes in a broad range of clinical disorders.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here