Premium
Electric properties tomography: Biochemical, physical and technical background, evaluation and clinical applications
Author(s) -
Katscher Ulrich,
Berg Cornelius A.T.
Publication year - 2017
Publication title -
nmr in biomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.278
H-Index - 114
eISSN - 1099-1492
pISSN - 0952-3480
DOI - 10.1002/nbm.3729
Subject(s) - permittivity , imaging phantom , electric field , magnetic resonance imaging , tomography , computer science , nuclear magnetic resonance , conductivity , physics , medical physics , biomedical engineering , dielectric , radiology , medicine , optics , optoelectronics , quantum mechanics
Electric properties tomography (EPT) derives the patient's electric properties, i.e. conductivity and permittivity, using standard magnetic resonance (MR) systems and standard MR sequences. Thus, EPT does not apply externally mounted electrodes, currents or radiofrequency (RF) probes, as is the case in competing techniques. EPT is quantitative MR, i.e. it yields absolute values of conductivity and permittivity. This review summarizes the physical equations underlying EPT, the corresponding basic and advanced reconstruction techniques and practical numerical aspects to realize these reconstruction techniques. MR sequences which map the field information required for EPT are outlined, and experiments to validate EPT in phantom and in vivo studies are described. Furthermore, the review describes the clinical findings which have been obtained with EPT so far, and attempts to understand the physiologic background of these findings.