Premium
Pulmonary perfusion quantification with flow‐sensitive inversion recovery (FAIR) UTE MRI in small animal imaging
Author(s) -
Tibiletti Marta,
Bianchi Andrea,
Stiller Detlef,
Rasche Volker
Publication year - 2016
Publication title -
nmr in biomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.278
H-Index - 114
eISSN - 1099-1492
pISSN - 0952-3480
DOI - 10.1002/nbm.3657
Subject(s) - parenchyma , perfusion , lung , respiratory system , medicine , nuclear medicine , perfusion scanning , blood flow , radiology , pathology
Blood perfusion in lung parenchyma is an important property for assessing lung function. In small animals, its quantitation is limited even with radioactive isotopes or dynamic contrast‐enhanced MRI techniques. In this study, the feasibility flow‐sensitive alternating inversion recovery (FAIR) for the quantification of blood flow in lung parenchyma in free breathing rats at 7 T has been investigated. In order to obtain sufficient signal from the short T 2 * lung parenchyma, a 2D ultra‐short echo time (UTE) Look‐Locker read‐out has been implemented. Acquisitions were segmented to maintain acquisition time within an acceptable range. A method to perform retrospective respiratory gating (DC‐SG) has been applied to investigate the impact of respiratory movement. Reproducibilities within and between sessions were estimated, and the ability of FAIR‐UTE to identify the decrease of lung perfusion under hyperoxic conditions was tested. The implemented technique allowed for the visualization of lung parenchyma with excellent SNR and no respiratory artifact even in ungated acquisitions. Lung parenchyma perfusion was obtained as 32.54 ± 2.26 mL/g/min in the left lung, and 34.09 ± 2.75 mL/g/min in the right lung. Application of retrospective gating significantly but minimally changes the perfusion values, implying that respiratory gating may not be necessary with this center‐our acquisition method. A decrease of 10% in lung perfusion was found between normoxic and hyperoxic conditions, proving the feasibility of the FAIR‐UTE approach to quantify lung perfusion changes.