z-logo
Premium
Post‐contractile BOLD contrast in skeletal muscle at 7 T reveals inter‐individual heterogeneity in the physiological responses to muscle contraction
Author(s) -
Towse Theodore F.,
Elder Christopher P.,
Bush Emily C.,
Klockenkemper Samuel W.,
Bullock Jared T.,
Dortch Richard D.,
Damon Bruce M.
Publication year - 2016
Publication title -
nmr in biomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.278
H-Index - 114
eISSN - 1099-1492
pISSN - 0952-3480
DOI - 10.1002/nbm.3593
Subject(s) - isometric exercise , skeletal muscle , contraction (grammar) , muscle contraction , anatomy , medicine , chemistry
Muscle blood oxygenation‐level dependent (BOLD) contrast is greater in magnitude and potentially more influenced by extravascular BOLD mechanisms at 7 T than it is at lower field strengths. Muscle BOLD imaging of muscle contractions at 7 T could, therefore, provide greater or different contrast than at 3 T. The purpose of this study was to evaluate the feasibility of using BOLD imaging at 7 T to assess the physiological responses to in vivo muscle contractions. Thirteen subjects (four females) performed a series of isometric contractions of the calf muscles while being scanned in a Philips Achieva 7 T human imager. Following 2 s maximal isometric plantarflexion contractions, BOLD signal transients ranging from 0.3 to 7.0% of the pre‐contraction signal intensity were observed in the soleus muscle. We observed considerable inter‐subject variability in both the magnitude and time course of the muscle BOLD signal. A subset of subjects ( n  = 7) repeated the contraction protocol at two different repetition times ( T R : 1000 and 2500 ms) to determine the potential of T 1 ‐related inflow effects on the magnitude of the post‐contractile BOLD response. Consistent with previous reports, there was no difference in the magnitude of the responses for the two T R values (3.8 ± 0.9 versus 4.0 ± 0.6% for T R  = 1000 and 2500 ms, respectively; mean ± standard error). These results demonstrate that studies of the muscle BOLD responses to contractions are feasible at 7 T. Compared with studies at lower field strengths, post‐contractile 7 T muscle BOLD contrast may afford greater insight into microvascular function and dysfunction.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom