Premium
7‐T MR—from research to clinical applications?
Author(s) -
Moser Ewald,
Stahlberg Freddy,
Ladd Mark E.,
Trattnig Siegfried
Publication year - 2012
Publication title -
nmr in biomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.278
H-Index - 114
eISSN - 1099-1492
pISSN - 0952-3480
DOI - 10.1002/nbm.1794
Subject(s) - in vivo magnetic resonance spectroscopy , magnetic resonance imaging , computer science , functional imaging , medical physics , susceptibility weighted imaging , preclinical research , nuclear magnetic resonance , medicine , radiology , physics
Over 20 000 MR systems are currently installed worldwide and, although the majority operate at magnetic fields of 1.5 T and below (i.e. about 70%), experience with 3‐T (in high‐field clinical diagnostic imaging and research) and 7‐T (research only) human MR scanners points to a future in functional and metabolic MR diagnostics. Complementary to previous studies, this review attempts to provide an overview of ultrahigh‐field MR research with special emphasis on emerging clinical applications at 7 T. We provide a short summary of the technical development and the current status of installed MR systems. The advantages and challenges of ultrahigh‐field MRI and MRS are discussed with special emphasis on radiofrequency inhomogeneity, relaxation times, signal‐to‐noise improvements, susceptibility effects, chemical shifts, specific absorption rate and other safety issues. In terms of applications, we focus on the topics most likely to gain significantly from 7‐T MR, i.e. brain imaging and spectroscopy and musculoskeletal imaging, but also body imaging, which is particularly challenging. Examples are given to demonstrate the advantages of susceptibility‐weighted imaging, time‐of‐flight MR angiography, high‐resolution functional MRI, 1 H and 31 P MRSI in the human brain, sodium and functional imaging of cartilage and the first results (and artefacts) using an eight‐channel body array, suggesting future areas of research that should be intensified in order to fully explore the potential of 7‐T MR systems for use in clinical diagnosis. Copyright © 2011 John Wiley & Sons, Ltd.