Premium
Comparison of MRI signatures in pattern I and II multiple sclerosis models
Author(s) -
Serres Sébastien,
Anthony Daniel C.,
Jiang Yanyan,
Campbell Sandra J.,
Broom Kerry A.,
Khrapitchev Alexandre,
Sibson Nicola R.
Publication year - 2009
Publication title -
nmr in biomedicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.278
H-Index - 114
eISSN - 1099-1492
pISSN - 0952-3480
DOI - 10.1002/nbm.1404
Subject(s) - pathology , multiple sclerosis , magnetization transfer , myelin , white matter , lesion , corpus callosum , cd68 , magnetic resonance imaging , demyelinating disease , diffusion mri , medicine , central nervous system , biology , neuroscience , immunohistochemistry , disease , immunology , radiology
Abstract The majority of individuals with multiple sclerosis (MS) exhibit T‐cell‐ and macrophage‐dominated lesions (patterns I and II; as opposed to III and IV). These lesions, in turn, may be distinguished on the basis of whether or not there are immunoglobulin and complement depositions at the sites of active myelin destruction; such depositions are found exclusively in pattern II lesions. The main aim of this study was to determine whether pattern I and pattern II MS lesions exhibit distinct MRI signatures. We have used a recently described focal MOG‐induced EAE model of the rat brain, which recapitulates many of the hallmarks of pattern II MS; we compared this with our previous work in a delayed type hypersensitivity model of a pattern I type lesion in the rat brain. Demyelinating lesions with extensive inflammation were generated, in which the T2‐weighted signal was increased. Magnetisation transfer ratio (MTR) maps revealed loss and subsequent incomplete recovery of the structure of the corpus callosum, together with changes in tissue water diffusion and an associated increase in ventricle size. Notably, the MTR changes preceeded histological demyelination and may report on the processes leading to demyelination, rather than demyelination per se . Immunohistochemically, these MRI‐detectable signal changes correlated with both inflammatory cell infiltration and later loss of myelin. Breakdown of the blood–brain barrier and an increase in the regional cerebral blood volume were also evident in and around the lesion site at the early stage of the disease. Interestingly, however, the MRI signal changes in this pattern II type MS lesion were remarkably consistent with those previously observed in a pattern I lesion. These findings suggest that the observed signal changes reflect the convergent histopathology of the two models rather than the underlying mechanisms of the disease. Copyright © 2009 John Wiley & Sons, Ltd.