Premium
A stochastic biomass blending problem in decentralized supply chains
Author(s) -
Ekşioğlu Sandra D.,
Gulcan Berkay,
Roni Mohammad,
Mason Scott
Publication year - 2021
Publication title -
naval research logistics (nrl)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 68
eISSN - 1520-6750
pISSN - 0894-069X
DOI - 10.1002/nav.21971
Subject(s) - supply chain , mathematical optimization , computer science , constraint (computer aided design) , quality (philosophy) , process (computing) , biomass (ecology) , linear programming , raw material , supply chain optimization , bilevel optimization , supply chain management , optimization problem , mathematics , business , philosophy , oceanography , chemistry , geometry , organic chemistry , epistemology , marketing , geology , operating system
Blending biomass materials of different physical or chemical properties provides an opportunity to adjust the quality of the feedstock to meet the specifications of the conversion platform. We propose a model which identifies the right mix of biomass to optimize the performance of the thermochemical conversion process at the minimum cost. This is a chance‐constraint programming (CCP) model which takes into account the stochastic nature of biomass quality. The proposed CCP model ensures that process requirements, which are impacted by physical and chemical properties of biomass, are met most of the time. We consider two problem settings, a centralized and a decentralized supply chain. We propose a mixed‐integer linear program to model the blending problem in the centralized setting and a bilevel program to model the blending problem in the decentralized setting. We use the sample average approximation method to approximate the chance constraints, and propose solution algorithms to solve this approximation. We develop a case study for South Carolina using data provided by the Billion Ton Study. Based on our results, the blends identified consist mainly of pine and softwood residues. The blends identified and the suppliers selected by both models are different. The cost of the centralized supply chain is 2%–6% lower. The implications of these results are twofold. First, these results could lead to improved collaborations in the supply chain. Second, these results provide an estimate of the approximation error from assuming centralized decision making in the supply chain.