Premium
Dynamic pricing and matching in ride‐hailing platforms
Author(s) -
Yan Chiwei,
Zhu Helin,
Korolko Nikita,
Woodard Dawn
Publication year - 2020
Publication title -
naval research logistics (nrl)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 68
eISSN - 1520-6750
pISSN - 0894-069X
DOI - 10.1002/nav.21872
Subject(s) - matching (statistics) , key (lock) , dynamic pricing , computer science , product (mathematics) , perspective (graphical) , mechanism design , throughput , operations research , business , marketing , economics , microeconomics , computer security , artificial intelligence , telecommunications , engineering , statistics , geometry , mathematics , wireless
Ride‐hailing platforms such as Uber, Lyft, and DiDi have achieved explosive growth and reshaped urban transportation. The theory and technologies behind these platforms have become one of the most active research topics in the fields of economics, operations research, computer science, and transportation engineering. In particular, advanced matching and dynamic pricing (DP) algorithms—the two key levers in ride‐hailing—have received tremendous attention from the research community and are continuously being designed and implemented at industrial scales by ride‐hailing platforms. We provide a review of matching and DP techniques in ride‐hailing, and show that they are critical for providing an experience with low waiting time for both riders and drivers. Then we link the two levers together by studying a pool‐matching mechanism called dynamic waiting (DW) that varies rider waiting and walking before dispatch, which is inspired by a recent carpooling product Express Pool from Uber. We show using data from Uber that by jointly optimizing DP and DW, price variability can be mitigated, while increasing capacity utilization, trip throughput, and welfare. We also highlight several key practical challenges and directions of future research from a practitioner's perspective.