Premium
Shortest path interdiction problem with arc improvement recourse: A multiobjective approach
Author(s) -
Holzmann Tim,
Smith J. Cole
Publication year - 2019
Publication title -
naval research logistics (nrl)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 68
eISSN - 1520-6750
pISSN - 0894-069X
DOI - 10.1002/nav.21839
Subject(s) - interdiction , stackelberg competition , shortest path problem , mathematical optimization , computer science , path (computing) , multi objective optimization , pareto principle , arc (geometry) , set (abstract data type) , cardinality (data modeling) , mathematics , mathematical economics , graph , theoretical computer science , engineering , geometry , data mining , programming language , aerospace engineering
Abstract We consider the shortest path interdiction problem involving two agents, a leader and a follower, playing a Stackelberg game. The leader seeks to maximize the follower's minimum costs by interdicting certain arcs, thus increasing the travel time of those arcs. The follower may improve the network after the interdiction by lowering the costs of some arcs, subject to a cardinality budget restriction on arc improvements. The leader and the follower are both aware of all problem data, with the exception that the leader is unaware of the follower's improvement budget. The effectiveness of an interdiction action is given by the length of a shortest path after arc costs are adjusted by both the interdiction and improvement. We propose a multiobjective optimization model for this problem, with each objective corresponding to a different possible improvement budget value. We provide mathematical optimization techniques to generate a complete set of strategies that are Pareto‐optimal. Additionally, for the special case of series‐parallel graphs, we provide a dynamic‐programming algorithm for generating all Pareto‐optimal solutions.