z-logo
Premium
Single machine just‐in‐time scheduling problems with two competing agents
Author(s) -
Gerstl Enrique,
Mosheiov Gur
Publication year - 2014
Publication title -
naval research logistics (nrl)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 68
eISSN - 1520-6750
pISSN - 0894-069X
DOI - 10.1002/nav.21562
Subject(s) - computer science , scheduling (production processes) , dynamic programming , heuristic , mathematical optimization , upper and lower bounds , schedule , job shop scheduling , set (abstract data type) , due date , single machine scheduling , function (biology) , algorithm , mathematics , artificial intelligence , programming language , mathematical analysis , operating system , evolutionary biology , biology
In scheduling problems with two competing agents, each one of the agents has his own set of jobs to be processed and his own objective function, and both share a common processor. In the single‐machine problem studied in this article, the goal is to find a joint schedule that minimizes the total deviation of the job completion times of the first agent from a common due‐date, subject to an upper bound on the maximum deviation of job completion times of the second agent. The problem is shown to be NP‐hard even for a nonrestrictive due‐date, and a pseudopolynomial dynamic program is introduced and tested numerically. For the case of a restrictive due‐date (a sufficiently small due‐date that may restrict the number of early jobs), a faster pseudopolynomial dynamic program is presented. We also study the multiagent case, which is proved to be strongly NP‐hard. A simple heuristic for this case is introduced, which is tested numerically against a lower bound, obtained by extending the dynamic programming algorithm. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 61: 1–16, 2014

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here