Premium
Models for production planning under power interruptions
Author(s) -
Latifoğlu Çağrı,
Belotti Pietro,
Snyder Lawrence V.
Publication year - 2013
Publication title -
naval research logistics (nrl)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 68
eISSN - 1520-6750
pISSN - 0894-069X
DOI - 10.1002/nav.21547
Subject(s) - computer science , solver , robust optimization , mathematical optimization , heuristic , probabilistic logic , production (economics) , set (abstract data type) , operations research , artificial intelligence , mathematics , economics , macroeconomics , programming language
We present a robust optimization model for production planning under the assumption that electricity supply is subject to uncertain interruptions caused by participation in interruptible load contracts (ILCs). The objective is to minimize the cost of electricity used for production while providing a robust production plan which ensures demand satisfaction under all possible interruption scenarios. The combinatorial size of the set of interruption scenarios makes this a challenging problem. Furthermore, we assume that no probabilistic information is known about the supply uncertainty: we only use the information given in the ILC to identify an uncertainty set that captures the possible scenarios. We construct a general robust framework to handle this uncertainty and present a heuristic to compute a good feasible solution of the robust model. We provide computational experiments on a real‐world example and compare the performance of an exact solver applied to the robust model with that of the heuristic procedure. Finally, we include the operational impact of interruptions such as “recovery modes” in the definition of the uncertainty set. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013