z-logo
Premium
Neighborhood search heuristics for selecting hierarchically well‐formulated subsets in polynomial regression
Author(s) -
Brusco Michael J.,
Steinley Douglas
Publication year - 2010
Publication title -
naval research logistics (nrl)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 68
eISSN - 1520-6750
pISSN - 0894-069X
DOI - 10.1002/nav.20380
Subject(s) - heuristics , heuristic , polynomial regression , selection (genetic algorithm) , tabu search , computer science , mathematical optimization , set (abstract data type) , regression , regression analysis , polynomial , mathematics , computation , machine learning , algorithm , statistics , mathematical analysis , programming language
Abstract The importance of subset selection in multiple regression has been recognized for more than 40 years and, not surprisingly, a variety of exact and heuristic procedures have been proposed for choosing subsets of variables. In the case of polynomial regression, the subset selection problem is complicated by two issues: (1) the substantial growth in the number of candidate predictors, and (2) the desire to obtain hierarchically well‐formulated subsets that facilitate proper interpretation of the regression parameter estimates. The first of these issues creates the need for heuristic methods that can provide solutions in reasonable computation time; whereas the second requires innovative neighborhood search approaches that accommodate the hierarchical constraints. We developed tabu search and variable neighborhood search heuristics for subset selection in polynomial regression. These heuristics are applied to a classic data set from the literature and, subsequently, evaluated in a simulation study using synthetic data sets. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here