z-logo
Premium
The assignment of storage locations to containers for a container stack
Author(s) -
Wan Yatwah,
Liu Jiyin,
Tsai PeiChun
Publication year - 2009
Publication title -
naval research logistics (nrl)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 68
eISSN - 1520-6750
pISSN - 0894-069X
DOI - 10.1002/nav.20373
Subject(s) - heuristics , container (type theory) , stack (abstract data type) , computer science , integer (computer science) , heuristic , mathematical optimization , integer programming , sequence (biology) , algorithm , mathematics , operating system , engineering , artificial intelligence , mechanical engineering , biology , genetics
Abstract Assigning storage locations to incoming or reshuffled containers is a fundamental problem essential to the operations efficiency of container terminals. The problem is notoriously hard for its combinatorial and dynamic nature. In this article, we minimize the number of reshuffles in assigning storage locations for incoming and reshuffled export containers. For the static problem to empty a given stack without any new container arrival, the optimum reshuffle sequence is identified by an integer program (IP). The integer program captures the evolution of stack configurations as a function of decisions and is of interest by itself. Heuristics based on the integer program are then derived. Their competitiveness in accuracy and time are established by extensive numerical runs comparing them with existing heuristics in literature and in practice as well as with extensions of the existing heuristics. Variants of the IP‐based heuristics are then applied to the dynamic problem with continual retrievals and arrivals of containers. Again, numerical runs confirm that the IP‐based heuristic is competitive. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here