z-logo
Premium
A multilevel passenger screening problem for aviation security
Author(s) -
McLay Laura A.,
Jacobson Sheldon H.,
Kobza John E.
Publication year - 2006
Publication title -
naval research logistics (nrl)
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.665
H-Index - 68
eISSN - 1520-6750
pISSN - 0894-069X
DOI - 10.1002/nav.20131
Subject(s) - airport security , aviation , computer science , class (philosophy) , operations research , set (abstract data type) , heuristic , greedy algorithm , computer security , engineering , artificial intelligence , aerospace engineering , algorithm , programming language
Passenger prescreening is a critical component of aviation security systems. This paper introduces the Multilevel Allocation Problem (MAP), which models the screening of passengers and baggage in a multilevel aviation security system. A passenger is screened by one of several classes, each of which corresponds to a set of procedures using security screening devices, where passengers are differentiated by their perceived risk levels. Each class is defined in terms of its fixed cost (the overhead costs), its marginal cost (the additional cost to screen a passenger), and its security level. The objective of MAP is to assign each passenger to a class such that the total security is maximized subject to passenger assignments and budget constraints. This paper shows that MAP is NP‐hard and introduces a Greedy heuristic that obtains approximate solutions to MAP that use no more than two classes. Examples are constructed using data extracted from the Official Airline Guide. Analysis of the examples suggests that fewer security classes for passenger screening may be more effective and that using passenger risk information can lead to more effective security screening strategies. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here