z-logo
Premium
Evidence of central modulation of bladder compliance during filling phase
Author(s) -
Smith Phillip P.,
DeAngelis Anthony M.,
Kuchel George A.
Publication year - 2012
Publication title -
neurourology and urodynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.918
H-Index - 90
eISSN - 1520-6777
pISSN - 0733-2467
DOI - 10.1002/nau.21223
Subject(s) - cystometry , urination , medicine , isoflurane , anesthesia , compliance (psychology) , urinary bladder , reflex , urology , urinary system , psychology , social psychology
Aims Bladder compliance is one expression of the pressure and volume relationship as the bladder fills. In addition to passive elements, autonomous micromotional detrusor activity contributes to this relationship. In the mouse cystometric model, compliance pressure contributes to voiding expulsive pressure. During attempts to isolate the detrusor contractile component of this filling pressurization, we found that compliance reversibly diminishes under conditions which remove central control from the micturition cycle. Methods Ten mature female mice underwent constant infusion pressure/flow cystometry under urethane anesthesia, and five awake mature female mice underwent constant infusion pressure cystometry. Following baseline cystometry, all mice were anesthetized with isoflurane to abolish the micturition reflex, and cystometry conducted with manual emptying of the bladders. Animals were then allowed to recover from isoflurane to re‐establish the micturition reflex, and cystometry again conducted. The urethane group was also studied immediately post‐mortem. Repeated measures comparisons of cystometric parameters were made across conditions. Results Compliance reversibly decreased in all mice with the abolishment of micturition responses by isoflurane anesthesia. A similar decrease was observed immediately post‐mortem in the urethaned mice. Bladder filling and voiding were not different between the intact micturition segments of the testing. Conclusions Enhanced compliance in mice with intact micturition responses suggests that autonomous micromotional activity is suppressed by central processes during normal filling. Since afferent activity during filling is also determined by the relationship between bladder pressure and volume, a feed‐forward afferent signal conditioning mechanism may exist, creating novel therapeutic targets for urinary dysfunctions. Neurourol. Urodynam. 31:30–35, 2012. © 2011 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here