z-logo
Premium
High frequency sacral root nerve block allows bladder voiding
Author(s) -
Boger Adam S.,
Bhadra Narendra,
Gustafson Kenneth J.
Publication year - 2012
Publication title -
neurourology and urodynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.918
H-Index - 90
eISSN - 1520-6777
pISSN - 0733-2467
DOI - 10.1002/nau.21075
Subject(s) - medicine , spinal cord injury , urination , urinary bladder , neurotomy , urology , reflex , surgery , anesthesia , urinary system , spinal cord , anatomy , psychiatry
Aims Dyssynergic reflexive external urethral sphincter (EUS) activity following spinal cord injury can prevent bladder voiding, resulting in significant medical complications. Irreversible sphincterotomies or neurotomies can prevent EUS activation and allow bladder voiding, but may cause incontinence or loss of sacral reflexes. We investigated whether kilohertz frequency (KF) electrical conduction block of the sacral roots could prevent EUS activation and allow bladder voiding. Methods The S2 sacral nerve roots were stimulated bilaterally to generate bladder pressure in six cats. One S1 nerve root was stimulated proximally (20 Hz biphasic pulse trains) to evoke EUS pressure, simulating worst‐case dyssynergic EUS reflexes. KF waveforms (12.5 kHz biphasic square wave) applied to an electrode implanted distally on the S1 nerve root blocked nerve conduction, preventing the increase in EUS pressure and allowing voiding. Results Applying KF waveforms increased bladder voiding in single, limited‐duration trials from 3 ± 6% to 59 ± 12%. Voiding could be increased to 82 ± 9% of the initial bladder volume by repeating or increasing the duration of the trials. Conclusions Sacral nerve block can prevent EUS activation and allow complete bladder voiding, potentially eliminating the need for a neurotomy. Eliminating neurotomy requirements could increase patient acceptance of bladder voiding neuroprostheses, increasing patient quality of life and reducing the cost of patient care. Neurourol. Urodynam. 31:677–682, 2012. © 2012 Wiley Periodicals, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here