z-logo
Premium
Preconditioning protects the guinea‐pig urinary bladder against ischaemic conditions in vitro
Author(s) -
Lorenzi Bruno,
McMurray Gordon,
Jarvis Gavin,
Brading Alison F.
Publication year - 2003
Publication title -
neurourology and urodynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.918
H-Index - 90
eISSN - 1520-6777
pISSN - 0733-2467
DOI - 10.1002/nau.10155
Subject(s) - medicine , ischemia , guinea pig , carbachol , stimulation , anesthesia , in vivo , urinary bladder , microbiology and biotechnology , biology
Aims To investigate the ability of ischaemic preconditioning (IPC) to protect guinea‐pig detrusor from damage caused by a subsequent more prolonged exposure to ischaemic conditions. Materials and Methods Smooth muscle strips were mounted for tension recording in small organ baths continuously superfused with Krebs' solution at 37°C. Ischaemia was mimicked by removing oxygen and glucose from the superfusing solution. Contractile responses to electrical field stimulation (EFS) and carbachol were monitored. Three regimes of preconditioning were examined: 15, 10, and 5 min of ischaemic conditions followed by 15, 10, and 5 min of normal conditions, respectively. Results Without preconditioning, nerve‐mediated responses were significantly and proportionally reduced by periods of ischaemic conditions lasting for 45, 60, and 90 min, but recovered fully after exposure to ischaemic conditions for 30 min. The recovery of the responses to EFS was significantly improved in preconditioned strips when the period of ischaemic conditions was 45 or 60 min. However, no significant differences were seen with preconditioning when the period of ischaemic conditions was 90 min. The recovery of responses to carbachol was much greater than for the responses to EFS, and no significant differences were found between control and preconditioned strips. Conclusions It is suggested that in vivo short periods of transient ischaemia may be able to protect the guinea‐pig bladder from the impairment associated with longer periods of ischaemia and reperfusion, which might happen in obstructed micturition. Our results also indicate that the phenomenon affects mainly the intrinsic nerves, which are more susceptible to ischaemic damage than the smooth muscle. Neurourol. Urodynam. 22:687–692, 2003. © 2003 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here