Premium
Development in modeling cyclic loading of sands based on kinematic hardening
Author(s) -
Maleki Mohammad,
Cambou Bernard,
Dubujet Philppe
Publication year - 2009
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.783
Subject(s) - stress space , yield surface , monotonic function , dilatant , hardening (computing) , plasticity , constitutive equation , geotechnical engineering , critical state soil mechanics , isotropy , kinematics , modulus , mechanics , materials science , geology , mathematics , structural engineering , geometry , engineering , finite element method , mathematical analysis , composite material , physics , classical mechanics , layer (electronics) , quantum mechanics
In this paper, there is presented an elastoplastic constitutive model to predict sandy soils behavior under monotonic and cyclic loadings. This model is based on an existing model (Cambou‐Jafari‐Sidoroff) that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule used in the deviatoric mechanism is non‐associated and a mixed hardening law controls the evolution of the yield surface. In this research the critical state surface and history surface, which separates the virgin and cyclic states in stress space, are defined. Kinematic hardening modulus and stress–dilatancy law for monotonic and cyclic loadings are effectively modified. With taking hardening modulus as a function of deviatoric and volumetric plastic strain and with defining the history surface and stress reversal, the model has the ability to predict the sandy soils' behavior. All of the model parameters have clear physical meanings and can be determined from usual laboratory tests. In order to validate the model, the results of homogeneous tests on Hostun and Toyoura sands are used. The results of validation show a good capability of the proposed model. Copyright © 2009 John Wiley & Sons, Ltd.