z-logo
Premium
Vertical stress distributions around batter piles driven in cross‐anisotropic media
Author(s) -
Wang ChengDer,
Lee TzenChin,
Chen MingTang
Publication year - 2008
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.751
Subject(s) - pile , anisotropy , isotropy , point (geometry) , parametric statistics , stress (linguistics) , geotechnical engineering , mechanics , structural engineering , materials science , geology , geometry , physics , mathematics , engineering , optics , linguistics , statistics , philosophy
This work presents analytical solutions to compute the vertical stresses for a cross‐anisotropic half‐space due to various loading types by batter piles. The loading types are an embedded point load for an end‐bearing pile, uniform skin friction, and linear variation of skin friction for a friction pile. The cross‐anisotropic planes are parallel to the horizontal ground surface. The proposed solutions can be obtained by utilizing Wang and Liao's solutions for a horizontal and vertical point load acting in the interior of a cross‐anisotropic medium. The derived cross‐anisotropic solutions using a limiting approach are in perfect agreement with the isotropic solutions of Ramiah and Chickanagappa with the consideration of pile inclination. Additionally, the present solutions are identical to the cross‐anisotropic solutions by Wang for the batter angle equals to 0. The influential factors in yielded solutions include the type and degree of geomaterial anisotropy, pile inclination, and distinct loading types. An example is illustrated to clarify the effect of aforementioned factors on the vertical stresses. The parametric results reveal that the stresses considering the geomaterial anisotropy and pile batter differ from those of previous isotropic and cross‐anisotropic solutions. Hence, it is imperative to take the pile inclination into account when piles are required to transmit both the axial and lateral loads in the cross‐anisotropic media. Copyright © 2008 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here