z-logo
Premium
A new approximation for pore pressure accumulation in marine sediment due to water waves
Author(s) -
Jeng D.S.,
Seymour B. R.,
Li J.
Publication year - 2007
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.547
Subject(s) - pore water pressure , consolidation (business) , submarine pipeline , geotechnical engineering , geology , sediment , poromechanics , mechanics , geomorphology , physics , porosity , porous medium , accounting , business
The residual mechanism of wave‐induced pore water pressure accumulation in marine sediments is re‐examined. An analytical approximation is derived using a linear relation for pore pressure generation in cyclic loading, and mistakes in previous solutions ( Int. J. Numer. Anal. Methods Geomech. 2001; 25 :885–907; J. Offshore Mech. Arctic Eng. (ASME) 1989; 111 (1):1–11) are corrected. A numerical scheme is then employed to solve the case with a non‐linear relation for pore pressure generation. Both analytical and numerical solutions are verified with experimental data ( Laboratory and field investigation of wave–sediment interaction . Joseph H. Defrees Hydraulics Laboratory, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 1983), and provide a better prediction of pore pressure accumulation than the previous solution ( J. Offshore Mech. Arctic Eng. (ASME) 1989; 111 (1):1–11). The parametric study concludes that the pore pressure accumulation and use of full non‐linear relation of pore pressure become more important under the following conditions: (1) large wave amplitude, (2) longer wave period, (3) shallow water, (4) shallow soil and (5) softer soils with a low consolidation coefficient. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom