Premium
Support vector machines‐based modelling of seismic liquefaction potential
Author(s) -
Pal Mahesh
Publication year - 2006
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.509
Subject(s) - cone penetration test , liquefaction , support vector machine , standard penetration test , artificial neural network , soil liquefaction , test data , artificial intelligence , machine learning , penetration test , data mining , computer science , engineering , pattern recognition (psychology) , geotechnical engineering , programming language , subgrade
This paper investigates the potential of support vector machines (SVM)‐based classification approach to assess the liquefaction potential from actual standard penetration test (SPT) and cone penetration test (CPT) field data. SVMs are based on statistical learning theory and found to work well in comparison to neural networks in several other applications. Both CPT and SPT field data sets is used with SVMs for predicting the occurrence and non‐occurrence of liquefaction based on different input parameter combination. With SPT and CPT test data sets, highest accuracy of 96 and 97%, respectively, was achieved with SVMs. This suggests that SVMs can effectively be used to model the complex relationship between different soil parameter and the liquefaction potential. Several other combinations of input variable were used to assess the influence of different input parameters on liquefaction potential. Proposed approach suggest that neither normalized cone resistance value with CPT data nor the calculation of standardized SPT value is required with SPT data. Further, SVMs required few user‐defined parameters and provide better performance in comparison to neural network approach. Copyright © 2006 John Wiley & Sons, Ltd.