Premium
An internally consistent integration method for critical state models
Author(s) -
J. Hickman Randall,
Gutierrez Marte
Publication year - 2005
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.412
Subject(s) - consolidation (business) , critical state soil mechanics , isotropy , elasticity (physics) , linear elasticity , algorithm , mathematics , numerical integration , mathematical optimization , computer science , finite element method , constitutive equation , mathematical analysis , engineering , structural engineering , materials science , physics , accounting , quantum mechanics , business , composite material
A new procedure to integrate critical state models including Cam–Clay and modified Cam–Clay is proposed here. The proposed procedure makes use of the linearity of the virgin isotropic compression curve and the parallel anisotropic consolidation lines in e –ln p space which are basic features of the formulation of critical state models. Using this algorithm, a unique final stress state may be found as a function of a single unknown for elastoplastic loading. The key equations are given in this article for the Cam–Clay and modified Cam–Clay models. The use of the Newton–Raphson iterative method to minimize residuals and obtain a converged solution is described here. This new algorithm may be applied using the assumptions of linear elasticity or non‐linear elasticity within a given loading step. The new algorithm proposed here is internally consistent and has computational advantages over the current numerical integration procedures. Numerical examples are presented to show the performance of the algorithm as compared to other integration algorithms. Published in 2005 by John Wiley & Sons, Ltd.