Premium
Centrifuge model tests on sand specimen under extensional load
Author(s) -
Wolf H.,
König D.,
Triantafyllidis Th.
Publication year - 2005
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.403
Subject(s) - centrifuge , shear (geology) , geotechnical engineering , geology , extensional definition , shear stress , shear band , granular material , shear zone , digital image correlation , stress (linguistics) , critical resolved shear stress , deformation (meteorology) , mechanics , materials science , rheology , composite material , shear rate , seismology , petrology , physics , linguistics , philosophy , oceanography , nuclear physics , tectonics
The appearance of shear banding in granular materials has been investigated intensively during the last decades and is still of ongoing importance in terms of understanding the stress–strain behaviour of the material, the localization phenomena and the interaction between soil and structure. Only less attention has been paid to the occurrence of systems of shear bands although such systems can be identified in geotechnical structures as well as in geological formations. In this paper we present results of experiments on sand specimens under extensional load in natural gravity as well as in increased gravity in the centrifuge where the influence of the stress level on the geometry of a shear band pattern, specified by the spacing of the shear bands and the angle between failure surfaces and minor stress direction, has been investigated. X‐ray technique has been used to visualize the failure zones inside the specimen, an optical measurement system called Digital Image Correlation has been applied to identify and observe the appearing deformation mechanism on the sides of the specimens in natural gravity as well as during the flight in the centrifuge. It can be shown that the geometry of the shear band pattern is sparsely influenced by the change of the stress level. Copyright © 2004 John Wiley & Sons, Ltd.