z-logo
Premium
Bayesian inference of spatially varying parameters in soil constitutive models by using deformation observation data
Author(s) -
Tao Yuanqin,
Sun Honglei,
Cai Yuanqiang
Publication year - 2021
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.3218
Subject(s) - random field , mathematics , bayesian probability , statistics , bayesian inference , settlement (finance) , kalman filter , field (mathematics) , soil science , geotechnical engineering , computer science , geology , world wide web , pure mathematics , payment
Parameters of soil constitutive models are usually identified through laboratory tests. The spatial variability of these parameters is generally not considered due to the limitation of the test scale. This study proposes a data‐driven approach to infer the spatially varying parameter of the modified Cam‐clay model from limited field observations and subsequently improves soil settlement predictions. The observation data and numerical results of random finite element method are assimilated in an inverse modeling process based on the iterative Ensemble Kalman filtering (iEnKF). Different unknown variables and number of observations are used to study their effects on parameter estimations and settlement predictions. The effectiveness of the proposed approach is illustrated through a synthetic partial‐loading test. The results show that the site‐specific spatial variability can be estimated reasonably, and predictions of settlement can be improved by using the inferred parameter field. When the variables to be inferred change from all 60 variables to the selected 17 important variables, the average error of the estimated fields increases, but the variance decreases. A reduction in the observation spacing and an increase in the number of observations lead to a slightly smaller error of the mean and considerably reduced uncertainties of soil parameters. Although the inferred results of parameter field show different accuracies, the corresponding calculated settlements are generally similar and satisfactory.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here