z-logo
Premium
Modeling cyclic shearing of sands in the semifluidized state
Author(s) -
Barrero Andres R.,
Taiebat Mahdi,
Dafalias Yannis F.
Publication year - 2019
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.3007
Subject(s) - liquefaction , geotechnical engineering , dilatant , shearing (physics) , constitutive equation , pore water pressure , simple shear , shear stress , triaxial shear test , plasticity , granular material , shear (geology) , effective stress , overburden pressure , materials science , geology , composite material , structural engineering , engineering , finite element method
Summary Liquefaction is associated with the loss of mean effective stress and increase of the pore water pressure in saturated granular materials due to their contractive tendency under cyclic shear loading. The loss of mean effective stress is linked to loss of grain contacts, bringing the granular material to a “semifluidized state” and leading to development and accumulation of large cyclic shear strains. Constitutive modeling of the cyclic stress‐strain response in earthquake‐induced liquefaction and post‐liquefaction is complex and yet very important for stress‐deformation and performance‐based analysis of sand deposits. A new state internal variable named strain liquefaction factor is introduced that evolves at low mean effective stresses, and its constitutive role is to reduce the plastic shear stiffness and dilatancy while maintaining the same plastic volumetric strain rate in the semifluidized state. This new constitutive ingredient is added to an existing critical state compatible, bounding surface plasticity reference model, that is well established for constitutive modeling of cyclic response of sands in the pre‐liquefaction state. The roles of the key components of the proposed formulation are examined in a series of sensitivity analyses. Their combined effects in improving the performance of the reference model are examined by simulating undrained cyclic simple shear tests on Ottawa sand, with focus on reproducing the increasing shear strain amplitude as well as its saturation in the post‐liquefaction response.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here