Premium
Analytical study of ground responses induced by the excavation of quasirectangular tunnels at shallow depths
Author(s) -
Zeng Guangshang,
Wang Huaning,
Jiang Mingjing
Publication year - 2019
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.2980
Subject(s) - viscoelasticity , finite element method , parametric statistics , geotechnical engineering , displacement (psychology) , stress (linguistics) , excavation , stress field , mechanics , field (mathematics) , displacement field , structural engineering , geology , engineering , mathematics , materials science , physics , psychology , linguistics , statistics , philosophy , pure mathematics , composite material , psychotherapist
Summary The construction of quasirectangular tunnels at shallow depths is becoming increasingly common in urban areas to efficiently utilize underground space and reduce the need for backfilling. To clarify the mechanical mechanism of the stresses and displacements around the tunnels, this study proposes analytical solutions that precisely account for quasirectangular tunnel shapes, the ground surface, the tunnel depth, and the ground's elastic/viscoelastic properties. The Schwarz alternating method combined with complex variable theory is employed to derive the elastic solution, and convergent and highly accurate solutions are obtained by superposing the solutions in the alternating iterations. Based on the solution and the extended corresponding principle for the viscoelastic problem, the time‐dependent analytical solutions for the displacement are obtained for the ground assuming any viscoelastic model. The analytical solutions agree well with the finite element method (FEM) numerical results for models that are completely consistent, and qualitatively agree with field data. Furthermore, based on the stress solution combined with the Mohr‐Coulomb failure criterion, the predicted initial plastic zone and propagation directions around the tunnels are qualitatively consistent with those determined by the limit analysis. A parametric study is performed to investigate the influences of the rectangular/quasirectangular tunnel shape, burial depth, and supporting pressure on the ground stresses and displacements.