z-logo
Premium
Large displacement FEM modelling of the cone penetration test (CPT) in normally consolidated sand
Author(s) -
Susila Endra,
Hryciw Roman D.
Publication year - 2003
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.287
Subject(s) - finite element method , cone penetration test , penetration (warfare) , geotechnical engineering , constitutive equation , mohr–coulomb theory , engineering , structural engineering , penetration test , materials science , mechanics , geology , physics , subgrade , operations research
A new finite element model based on a large strain formulation has been developed to study cone penetration in normally consolidated sand. An auto‐adaptive remeshing technique was utilized for handling the very large distortion of sand surrounding the cone tip. A frictional contact interface utilizing Mohr–Coulomb's theory was chosen to represent interactions between the surface of the cone and sand. To model the sand behaviour, the non‐associated Drucker–Prager constitutive model was selected. ABAQUS, a commercial finite element software package, was used to implement the model. The explicit solution algorithm was chosen due to its effectiveness for complicated contact problems. Analysis results proved that the model successfully captured the cone penetration behavior in sand. In addition, a chart to predict internal friction angles based on cone tip resistance for different vertical effective stresses was provided. This paper also shows a typical distribution of sleeve resistance, tip resistance—penetration relationship, and typical contours of vertical, horizontal, and shear stresses in normally consolidated sand. Finally, a non‐uniform resistance was found along the length of the friction sleeve. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here