Premium
Development of a technique for modelling clay liner desiccation
Author(s) -
Zhou Y.,
Kerry Rowe R.
Publication year - 2003
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.282
Subject(s) - isothermal process , constitutive equation , geotechnical engineering , infiltration (hvac) , mechanics , finite element method , thermal conduction , water content , capillary action , materials science , pore water pressure , void ratio , thermodynamics , engineering , composite material , physics
This paper presents a model for the analysis of clay liner desiccation in a landfill barrier system due to temperature effects. The model incorporates consideration of fully coupled heat‐moisture‐air flow, a non‐linear constitutive relationship, the dependence of void ratio and volumetric water content on stress, capillary pressure and temperature, and the effect of mechanical deformation on all governing equations. Mass conservative numerical schemes are proposed to improve the accuracy of the finite element solution to the governing equations. The application of the model is then demonstrated by examining three test problems, including isothermal infiltration, heat conduction and non‐isothermal water and heat transport. Comparisons are made with results from literature, and good agreement is observed. Copyright © 2003 John Wiley & Sons, Ltd.