Premium
Inverse analysis for geomaterial parameter identification using Pareto multiobjective optimization
Author(s) -
Jiang Qinghui,
Sun Yang,
Yi Bing,
Li Tiansheng,
Xiong Feng
Publication year - 2018
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.2812
Subject(s) - inverse , inverse problem , multi objective optimization , artificial neural network , mathematics , geotechnical engineering , mathematical optimization , computer science , geology , geometry , mathematical analysis , artificial intelligence
Summary An inverse analysis method that combines the back propagation neural network (BPNN) and vector evaluated genetic algorithm (VEGA) was proposed to identify mechanical geomaterial parameters for a more accurate prediction of deformation. The BPNN is used to replace the time‐consuming numerical calculations, thus enhancing the efficiency of the inverse analysis. The VEGA is used to find the Pareto‐optimal solutions to multiobjective functions. Unlike traditional back‐analysis methods which are based on only 1 type of field measurement and a single objective function, this proposed method can consider multiple field observations simultaneously. The proposed method was applied to the Shapingba foundation pit excavation located in Chongqing city, China. Two types of measurements are considered in the method simultaneously: the displacements in the x ‐direction (north orientation) and those in the y ‐direction (east orientation). Five deformation modulus parameters for artificial backfill soil, silty clay, siltstone, sandstone, and mudstone were selected as the inversion parameters. Compared with the weighted sum approach, the proposed method was demonstrated as an efficient multi‐objective optimization tool for back calculating undetermined parameters. After performing a forward‐calculation using the optimized parameters obtained by the inverse analysis, the predicted results were well consistent with the practical deformation in magnitude and trend.