Premium
Modeling of self‐desiccation in a cemented backfill structure
Author(s) -
Cui Liang,
Fall Mamadou
Publication year - 2017
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.2756
Subject(s) - desiccation , multiphysics , consolidation (business) , materials science , pore water pressure , geotechnical engineering , environmental science , composite material , geology , finite element method , engineering , ecology , structural engineering , accounting , business , biology
Summary After placement of cemented tailings backfill (CTB), which is a mixture of tailings (man‐made soil), water, and binder, into underground mined‐out voids (stopes), the hydration reaction of the binder converts the capillary water into chemically bound water, which results in the reduction of the water content in the pores of the CTB, thereby causing a reduction in the pore‐water pressure in the CTB (self‐desiccation). Self‐desiccation has a significant impact on the pore‐water pressure and effective stress development in CTB and paramount and practical importance for the stability assessment and design of CTB structures and barricades. However, self‐desiccation in CTB structures is complex because it is a function of the multiphysics or coupled (i.e., thermal, hydraulic, mechanical, and chemical) processes that occur in CTB. To understand the self‐desiccation behavior of CTB, an integrated multiphysics model of self‐desiccation is developed in this study, which fully considers the coupled thermal, hydraulic, mechanical, and chemical processes and the consolidation process in CTB. All model coefficients are determined in measurable parameters. Moreover, the predictive ability of the model is verified with extensive case studies. A series of engineering issues are examined with the validated model to investigate the self‐desiccation process in CTB structures with respect to the changes in the mixture recipe, backfilling, and the surrounding rock and curing conditions. The obtained results provide in‐depth insight into the self‐desiccation behavior of CTB structures. The developed multiphysics model is therefore a potential tool for assessing and predicting self‐desiccation in CTB structures.