Premium
Coupled bonded particle and lattice Boltzmann method for modelling fluid–solid interaction
Author(s) -
Wang Min,
Feng Y.T.,
Wang C.Y.
Publication year - 2016
Publication title -
international journal for numerical and analytical methods in geomechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.419
H-Index - 91
eISSN - 1096-9853
pISSN - 0363-9061
DOI - 10.1002/nag.2481
Subject(s) - geomechanics , lattice boltzmann methods , mechanics , particle (ecology) , fluid dynamics , discrete element method , fracture (geology) , materials science , geotechnical engineering , geology , physics , oceanography
Summary This paper presents a two‐dimensional coupled bonded particle and lattice Boltzmann method (BPLBM) developed to simulate the fluid–solid interactions in geomechanics. In this new technique, the bonded particle model is employed to describe the inter‐particle movement and forces, and the bond between a pair of contacting particles is assumed to be broken when the tensile force or tangential force reaches a certain critical value. As a result the fracture process can be delineated based on the present model for the solid phase comprising particles, such as rocks and cohesive soils. In the meantime, the fluid phase is modelled by using the LBM, and the immersed moving boundary scheme is utilized to characterize the fluid–solid interactions. Based on the novel technique case studies have been conducted, which show that the coupled BPLBM enjoys substantially improved accuracy and enlarged range of applicability in characterizing the mechanics responses of the fluid–solid systems. Indeed such a new technique is promising for a wide range of application in soil erosion in Geotechnical Engineering, sand production phenomenon in Petroleum Engineering, fracture flow in Mining Engineering and fracture process in a variety of engineering disciplines. Copyright © 2016 John Wiley & Sons, Ltd.